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Abstract

In this paper, we present a general method for the calculation of the various stress intensity factors in a material
whose constitutive law is elastic, linear and varies continuously in space. The approach used to predict the stress inten-
sity factors is an extension of the interaction integral method. For this type of material, we also develop a systematic
method to derive the asymptotic displacement fields and use it to achieve better-quality results. A new analytical asymp-
totic field is given for two special cases of graded materials. Numerical examples focus on materials with space-
dependent Young modulus.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fracture mechanics deals with the prediction of crack propagation in a material as a function of time
(see Cotterell, 2002). The difficulty lies in the presence of a singularity at the crack’s tip. The early works
in linear elasticity were those of Griffith (1921) and Irwin (1958); they introduced the concept of energy re-
lease rate, believed to be a necessary condition for the crack to evolve (see Bui, 1978). Further, in order to
take into account the direction of propagation of the crack, the concept of fracture mode must be intro-
duced. This has already been done in the case of materials with constant mechanical properties in space
(see Kim and Paulino, 2003a,b; Rao and Rahman, 2003). Here, we are focusing on the case where the
mechanical properties vary continuously in space. This type of material shall be called Graded Material
(see Dolbow and Gosz, 2002). The approach chosen in this paper is deliberately a macroscopic homogen-
ised vision of the fracture of the material.
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Let Q be a solid with elastic, linear and isotropic behavior whose constitutive relation varies continu-
ously in space. It is subjected to static loads leading to a displacement field U and a stress field o.

2. Stress field near the crack’s tip

The problem’s assumptions enable us to express the static equilibrium equation in absence of body forces
as
dive=10 (1)
This is a system of first-order differential equations over the continuous domain €2, whose solution involves
basis functions (defined over the whole domain ) and constants which can be denoted K7 and Ky (see Bui,
1978). Using the polar coordinate system in the Cartesian framework (see Fig. 1), the stress field in the
vicinity of the crack tip takes the form (at a point M(r,0) in space)

[0(M)] = Ki[g(M)] + Kulgn(M)] (2)

where gr and ggy can be viewed as the shape functions of the stress field at the crack tip (detailed expression
of ¢ are given in Appendix A.1l).

So far, no reference has been made to the material’s elastic linear constitutive relation: therefore, these
results are true for any spatial distribution of this relation, provided that it is continuous over the domain,
Q.

3. Displacement field near the crack’s tip
3.1. Shape of the displacement field

Now, the (linear) constitutive relation can be used to derive the shape of the displacement field near the
crack tip

0=C-e(U) =Kig + Kugy (3)
Thus, the displacement field can be written as
UM) = Kyuy(M) + Kyuy (M) (4)
ue
Uy Ur
r_~M(r,0)
9
Origin O Ux

Fig. 1. Basis and coordinate system used.
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The set of the solutions is the space generated by the vectors uj(M) and uj;(M) defined by: C.e(u}) = g; for
i =1 and II. Let us apply this method to the following two materials:

e a material with constant mechanical properties in space: constitutive law denoted C"; material’s asymp-
totic fields denoted u’;

e a material with mechanical properties varying continuously in space: constitutive law denoted C*(M);
material’s asymptotic fields denoted U’.

Obviously, for i =1 and II, one has

Ch - eful) = (M) - (U]) = & (5)
Therefore, the asymptotic displacement fields for the material with varying characteristics in space are func-
tions of the displacement fields for the material with constant characteristics and of the constitutive rela-
tions of the two materials considered

e(U;) = (C' (M)~ - (C" - e(u))) (6)

1

It appears that this equation is a very general and powerful tool which allows to compute the asymptotic
strain field ¢( U*) for any continuously varying graded material using the known asymptotic strain field of a
constant mechanical property one.
Applying this result to a material with constant Poisson ratio and varying spatially Young modulus, one
gets for i=1 and II
E —
£ <) ™)

(U] =

3.2. Asymptotic displacement fields: case of a material with a varying young modulus in space
and a constant poisson ratio

3.2.1. General formulation
The resolution of the differential equations (see Eq. (7)) leads to the following expression of the displace-
ment fields (using «” defined in Appendix A.1):

U (r,0) = 1\/;_7: cosg(k ~ cos0) /0 mdt (8)
Up(r,0) = 09 (% cos? (k + cos ¢ —z>> — Uy, ¢>]d¢ )
Ui (r,0) = 1\;;_7: [— sin g) (k + cos 0) + zm% /0 mdt (10)
Uty (r, 0) /00 % <sin%(k+cosq§ ~2) +2sin¢cos§)1d¢

0
- /0 U (r, $)dp + fia() (11)

where Kolosov’s constant k is 3 — 4v in plane strain or fﬁ in plane stress.
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Observing that Eq. (7) for asymptotic strain consists in three scalar differential equations, the function fi
can be determined using the third one, i.e.

en(T)) = ﬁ(*) (12)

This set of equations yields to the solutions of the proposed problem. In the general case, these can be ob-
tained numerically.

3.2.2. Exact analytical case: E(M) = Eype™

Two explicit exact solutions have been found for U*. The first one is given in Appendix B.1. The second
is developed in this section. The objective of this section is to develop the complete analytical expression of
the asymptotic displacement fields U7 and Uy, for this type of material. This material is interesting because
it leads to an analytical solution:

. 1ty fr
U (r,0) = £ ,/%(k cos 0) COS—T/ (13)
. l+v [r 0 30\ _,,
Uip(r,0) = 6Es Z”K(6k 9)sm2+s1n7>e
L0 30\ 1 Vo,
+ ((6—12k)s1n§+2s1n7>\/7/ e dt] (14)
Ug, (r 9)_1+v L |—sin 0 (k+cos€))+231n / (15)
w5 T, V2n Var
. I+v 0 30
U (r,0) = 25, ,/znl((Zk 3)cosz+c057— 1 —3k>
+ (2—4k)cosg+2cos3—0+3k+l— 2(k + 3)ar / (16)
2 2 Vor

Since these solutions are completely analytical, they can be used in calculation programs without numerical
computations.

3.2.3. Partial analytical solution

Two solutions for more usual materials are given in Appendix B.1. These imply partial numerical
integration.

4. Formulation of the energy release rate

Suo and Combescure (1992a,b) showed that the energy release rate can be written for space variable
material as follows, using any continuous virtual displacement field @ parallel to the crack face (Fig. 2)

G:/Qtr(mVU-V@)-de/Qw-dw dQJrf—/trV(E 0 eU)- e(U)]dQ+/Qf~U

-div(@)dQ—i—/Vf-@-UdQ vo (17)
Q
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Fig. 2. Description of the field @ near the crack’s tip.

with o the thermal expansion coefficient, 07 the temperature variation within the material, and with w
defined by

w:%tr[o-e(U)] (18)

Remark. Eq. (17) is valid on the whole domain Q. The choice of @ function is arbitrary. If we chose © to
be (0,0) outside the circle R,, G has to be computed only within the circle.

In a finite element program, such as CAST3M, the GO method (see Suo and Valeta, 1996; Suo and Bro-
chard, 1991; Attigui et al., 1995) is used.

5. Mixed-mode analysis for a variable material

The method presented here relies essentially on the shape of the displacements near the crack tip. We
showed the relation between the displacements and the stress intensity factors K; and Kj;. The following
method enables one to calculate these stress intensity factors.

5.1. Preliminaries

First, let us introduce the following functions:
J: R* = R(u,v)—J (u,v) = a(u,v)

where

e a(-,") is a symmetric bilinear form defined as

alu, v) = /gtr[@ (W) - V- VO +C - ev) - V- VO — (div(©) - € + VT - O) - e(ut) - e(0)]dQ

These functions have the following property: if U is the actual displacement field, then
J(U,U)=2-G=a(U,U) (19)
Let uj and uj, be two fields characterizing Mode I and Mode II in displacement. By choosing
U = Kyuj + Kyuj, one gets

1 S § 1 S S S S
G= Ea(“ia “i)K% + 5“(“11’ uII)K%I + a(uy, uy ) KiKn
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5.2. The method

In order to determine the two scalars (K and Kjy), one must write two scalar equations involving the two
quantities; let us apply the bilinear form a(-,-) to two pairs of displacement fields

a(U7 ui) = Kla(uf’ ui) + KHCI(U';I, M;) (20)
a(U, uy) = Ka(uy, uyy) + Kua(uyy, uyy)
The solutions are
Kl — a(uilv uil) ) a(U7 ui) - a(uiv uil) i a(Ua uil) (21)

2
a(u, uy) - a(uy, uy) — a(uy, uy)

Remark 1. If the material is constant, then

2(1 —v? 2(1 —v?
atutad) =20ty =20 ) = 0 2

Thus, the stress intensity factors can be written

K Eoa(U,ul) Eoa(U,uly)
T =) 2(1 =)

This particular case agrees with published results (Visse, 1995).

Ky =

Remark 2. Egs. (21) and (22) are new because of the presence of term a(u, #;) which is compulsory when
the material is spatially variable and vanishes when material is constant.

5.3. Use of the asymptotic fields of the constant material for a variable material

The space variation of the material raises the question of the choice of the field « in the formulation of
the stress intensity factors. One can use either u” or U?. However, one may anticipate that the quality of the
results will depend on the asymptotic fields chosen for the uncoupling. Near the crack tip, the fields u” give a
good approximation because the material’s characteristics are continuous. However, as the distance to the
crack tip increases, these fields become less good than the fields U}, which take into account the variation of
the material’s characteristics. The numerical examples will illustrate these points.

In this section, we chose to use the asymptotic % fields. Table 1 shows the analytical results of the cal-
culations of a(u”, uﬁ?) for different type of spatially variable Young modulus. In particular, it shows the evo-
lution of a(u”, u;’) as a function of the radius R of the crown @. One can see that the error of the prediction
of Ky and K is proportional to the product of the proportionally constant v, f3, y by the radius R in case of
linear dependency and to R? in case of quadratic dependency. It is clear in this case that the use of " dis-
placement fields to uncouple the K; implies a very fine mesh close to the crack tip to have a good accuracy.

Remark. One should note that for any continuous material (denoting E(0,0) = Ej)

2(1 —? 2(1 =2
lima(ul,u}) = 20-v) w, lima(ul,ul}) =0 (25)

lima(u®,u) =
R0 EO ) R—0 (Il’ Il) EO R—0
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Table 1
Table showing the error in the coefficients a(u”, uf) as a function of the radius R of the crown © for several type of spatial variations of
the Young modulus

Error in a(ul, u!)
2(1-12 2(1-12

E(x,) a(uf, uf) 205" a(uy,ufy) —* 5" a, uy)
E, 0 0 0
Eo+x —2.994% —1.21% 0
Eo+ By 0 ‘ 0 ‘ 0.24%

0
Ey+ox y 0 0 0.58 2%

0

6. Numerical examples

First, the validation of the formulation of the stress intensity factors will enable us to focus on the choice
of u{ and more particularly on the influence of the radius of the field © on the results. Since the fields U;
become closer to the true solution than the fields «/ as the distance to the crack tip increases, they lead to
results that are less dependent on the size of the field ®. We will observe this difference in a finite element
program (CAST3M Suo and Combescure, 1992a) and in a program using the eXtended Finite Element
Method (X-FEM, Moes et al., 1999; Moes et al., 2002). Finally, the X-FEM will enable us to consider
the case of an inclined crack.

6.1. Validation of the formulation

In order to validate the method described in the previous sections, the paper Kim and Paulino, 2003a
will be used as the reference. The characteristics of the test are presented in Fig. 3 (displacement loading
€ =1). The programming of the bilinear form «(-,") is the core of this validation. The normalised stress
intensity factors (K;) are defined as follows:

_ K,
' T EE(—0.4)ya (26)
e=1
o =¢E(z)
T . The function E(z) = 2 — tanh(Bz), with a=0.4
y 3.5
]_3( 3.0 1
ti A
: p 0 9 2.5
a=0.4 2.0
1.5 A
| 18- :
5 & 0.5 . i ; ;
1 —-0.4 -0.2 0.0 0.2 0.4 0.6

Fig. 3. Numerical validation: geometry, loading, Young modulus.
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Let us recall that the expression of the stress intensity factor for Mode I is
(uilv ”il) i a(U, uél) — a(ui, uéll) ) a(U, ”il)
; . . s \2
auy, uy) - a(uy, uyy) — a(uy, uy)
How should one choose the asymptotic fields to be used in the calculation of K;? Let us choose to use the
asymptotic fields of a material whose mechanical characteristics are constant (values taken at the crack tip).

Thus, these are approximate fields. We are going to focus on the influence of the radius of the field @ on the
results.

K =2 (27)

2.8+ -,
2.16 4 2.7t S .
2.6 1 - .
2.14 + 254 o
24+ B
212+ i i
e et seeme 8 e e 2.3 -J— ———————————————
2.10 } } } } {R/a 2.2 ! f } ! IR/a
0 02 04 06 08 1.0 0 0.2 04 06 08 1.0
a) K, for material : 8 =0 b) K; for material : 5 =5
3.1+ ™ o,
3.0+ * . 324+ o e
291 * 301 3 .
air 2 " 2.8—/_______'. _________
27 i 7. . i ..
26 _z_ __________ .___.___ 26 T [}
2.5 | : : : ' | R/a 2.4 : } : ——2R/a
0 02 04 06 08 1.0 0 0.2 04 06 08 1.0
¢) K for material : § = 10 d) K for material : 3 = 15
40 4 44T
R B W——— | oot e,
3.0 F——> ——— 4.0 1 o
2.5 1 " LR B
2.0 T ‘. 3.6 T -
1.5 + °e 34+ &
1‘0 1 e . . 3'2 _‘/ - g o - SR
0.5 | : : —TR/a 3 i : | : R/a
0 02 04 06 08 1.0 0 0.02 0.04 0.06 0.08

e) K; for material : 8 = 50

Fig. 4. Results of the numerical validation.
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Table 2
Table of the test results compared to the results of Kim and Paulino (2003a)
p Pa Direct Method 1 Method 11 Eischen This method
0 0 2.109 2.133 2.133 2.112 2.1118
5 2 2.289 2.304 2.348 2.295 2.300
10 4 2.549 2.589 2.670 2.571 2.586
15 6 2.729 2.769 2.879 2.733 2.765
50 20 3.050 3.314 3.579 3.228 3.207
Table 3
Table of the maximum crown radius as a function of the maximum error allowed on K;
p Pa R/a max for the following allowable errors
Error on Ky: 5% (%) Error on Ky: 10% (%) Error on Kj: 20% (%)
5 2 19 33 39
10 4 13 21 32
15 6 8 13 21
50 20 1.5 2 3

As expected in previous section, the influence of the radius of the crown can be observed, and the greater
the variation of the modulus, the smaller a radius it takes to achieve an acceptable result. This can be ex-

plained by the variability of the Young modulus. Fig. 4 shows the calculated K, (black dots) as functions of
the crown of virtual field @ used for various Young moduli. In addition, the horizontal lines represent the
results of the works of Kim and Paulino (2003a). These authors proposed various methods which are sum-
marized in Table 2 and compared to the results of Fig. 4. The continuous black line corresponds to the
Direct Method, the continuous grey line to Method II, the dotted black line to Method I and the dotted
grey line to the Eischen Method.

Convergence of the results occurred as soon as the Young modulus converged towards E, (value at the
crack tip). The maximum acceptable radius of a crown as a function of f§ is shown in Table 3. The conclu-
sion is that when the variation of Young modulus is large near the crack tip, a very fine mesh is needed to
get a good Kp value. R/a has to be around 1%.

6.2. Choice of the asymptotic solutions in the calculation of the stress intensity factors

The advantage of the method presented resides in the available asymptotic solutions to choose from. By
enriching the information in these solutions one can use larger @ crowns (and, therefore, larger elements in
these crowns). In the end, enriching the asymptotic solutions reduces the number of elements near the crack
tip.

For a given error on the stress intensity factors, richer solutions enable one to use a larger field.

The enrichment of the asymptotic displacement fields yields greater independence with respect to the
radius of the circular field.

Fig. 5 describes the mechanical problem. The quality of the prediction of K; and Kj; with a standard
finite element solution and with the two «”" and U* fields are compared for Finite Element CAST3M in
Fig. 6 and X-FEM in Fig. 7.

Fig. 8 shows the relative error in the calculated stress intensity factor Kj as a function of the radius of
the field and of the asymptotic solutions chosen for the two calculation cases (CAST3M and X-FEM).
This is a very interesting graph as it shows two things: first, the computational effectiveness of the
X-FEM compared to the finite element method (CAST3M). The results with the X-FEM are virtually
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r.A. .

¥
Lx

ti

= |2
a=0.4
N
1

Fig. 5. Geometry of the mixed-mode test case (Young modulus is: E(M) = Exe™).
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= CAST3M: decoupling field u”
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K11,10_2]WP0J\/E
70 + Lo oo ;

(R
60" .-

.l
50 + "
Rlain %

40 —t—tt—t
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o CAST3M: decoupling field U*

Fig. 6. Influence of the radius of the @ crown on the calculation of K; and Ky with CAST3M.

395

K;.1072M Pa/m
390+ " vm
3854 AAA A A "
380+ °
8715 Rlain% "
370 L L L L L L 1 1

0 5 10 15 20 25 30 35 40
4 X-FEM: decoupling field u”

80T
K]1.1072MP0/\/7'_I’L
70 T+
aaa L,
604 A
50 T
Rliein %

0 T T T T T T T 1
0 5 10 15 20 25 30 35 40
2 X-FEM: decoupling field U*

Fig. 7. Influence of the radius of the @ crown on the calculation of Kj and Kj; with X-FEM.

independent of the crown (see Figs. (21) and (22)). This is due to the fact that the extended enriched func-
tions contained all the ingredients and thus the minimisation done with the linear system solution leads to
automatic adjustment of the coefficients in an energetic norm. Second, using the asymptotic solutions of
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16
14+ . X-FEM: decoupling field U* a
121
10+ . . X-FEM: decoupling field U* &
8+ . o
6T . o CAST3M: decoupling field u® =
4 = 0 Rla in %
2T, " © N 2| CAST3M: decoupling field U* o

0 5 10 15 20 25 30 35 40

Fig. 8. Relative error (in %) in Kj as a function of the radius of the @ field’s crown.

the variable material for decoupling leads to smaller errors than using asymptotic solutions of the con-
stant material.

6.3. X-FEM: inclined crack in a graded material
A diagram of the test is shown in Fig. 9. Since the material does not lend itself to the analytical deter-
mination of the asymptotic solutions, decoupling was achieved using the displacement fields of the constant

material (value at the crack tip for the actual material). The results for crack angles 0°, 30°, 40° and 60° in
the material (E(M) = 2¢**) are shown in Figs. 10 and 11.

P11

y < »
Lx N\s

NN

Fig. 9. Inclined crack: geometry and loading (Young modulus is: E(M) = Exe*).

4000
L] Odeg K[ .
+ 30deg 35001 - - R
x40 deg =t : PO S
¢ + M
. 60 deg 3000+ - ¢ : e e

25001 - & a Ao A

. . . .R/a in. %
2000 t 1 } t } } u
0 5 10 15 20 25 30 35 40

Fig. 10. Influence of the radius of the @ field’s crown on the calculation of Kj for an FGM in mixed mode, for various crack angles f.
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1400
Ko . x
« Odeg 12004 PR A
A A N - X
1000-- . . . . . Cy B . . . . . .
¢ 30 deg xooX N
B00T 4 v "
x 40 deg 600+
400 +
4 60 deg ]
200+
R/ain' %
0 t t t t } t

0 5 10 15 20 25 30 35 40

Fig. 11. Influence of the radius of the O field’s crown on the calculation of Kj; for a FGM in mixed mode, for various crack angles f.

Figs. 10 and 11 indicate a certain stability of the results with respect to the @ field’s crown: the error in
the stress intensity factors is 20% at the most for a radius of the crown equal to 40% of the crack’s length
(which is an extremely large crown). A reasonable crown size is no more than 20% of the crack’s length,
which corresponds to an error in the stress intensity factors of 10%.

7. Conclusion and future works

The uncoupling of the fracture modes involves a virtual crown (e.g. field @). From a computational
standpoint, it is preferable for the results not to depend on the radius of this crown. This is indeed the case
for a constant material. Conversely, for a variable material, the material’s characteristics vary within the
crown and, therefore, the use of the displacement fields of the constant material induces a sensitivity to
the radius of the crown. We achieved better stability by using the variable constitutive relation along with
the asymptotic fields of the variable material.

However, in most cases, there is no exact asymptotic solution for the material E(X). The X-FEM
tool produced much better results than standard finite element approach because of the presence in the ex-
tended functions of all basic function of the fields ie /r{cos(0/2),sin(0/2),cos(30/2),sin(30/2)} and the
technique is hence highly recommended even if there is no exact asymptotic solution to efficiently decouple
KI and KII-

Appendix A

A.1. Asymptotic stress field: case of a material with constant characteristics

(r,0) ! K cos0 1 sin0sin30 K sino 2+cosocos30
r,0) = ({1l —smzsmm—| — = = .
vl EE) PRa) L) 2997
1 T 0 .0 . 30 .0 0 30
0,,(r, 0) :\/2_717 _KI cosi (1 —i—smz sm?) — Ky smE cosi cosj}
1 [ .0 0 30 0 .0 . 30
Oy (7, 0) :\/2_7; _KI smz cosz 0057—K11 cosz (1 — smz smj)]
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A.2. Asymptotic displacement fields: case of a material with constant characteristics

ol (r,0)

”?9(”» 0) =

u?lr(rv 9) =

uilll)(rv 9) =

Appendix B

_Ly Lcos(?)(k—cosé))

Eo 2n

1+v [r . [0
i 5, Sin (—) (k — cos 0)

1+v |r
Eo 21

\
<]
=
AR
oD
~_
=
+
<)
o
w2
>
S~—
+
o
<]
=
o
| I

B.1. Young's modulus: E(r,0) = Ey+ E ,r

U}.(r (7", 9)

Uip(r, 0) =

Uy, (r,0)

Uy (r, 0)

_1+v cos 0)
- E, \/2 2

1 + v / sin%” + (6k +9) s.ing+ 2sin3 — (12k — 6) sin ¥ Eo e [ET
EO +E_’,.l” EO E‘,J" EO

.0
—s1n2(k+cost9 —|—2s1n—

2Err 1 _

1+v / [cos3 + (2k — 3)cosy+4 — 4k +
2 E0+E,I"

2cosdl 4 (2 —4k)cosl—4(1 —k) |E
+ B ( ) 2 ( ) 0 7” "Ffll(’”)

B.2. Young's modulus: E(x,y) = Ey+ E \x

Two analytical integrations for Uy, and Uy, (from Egs. (8) and (10))

Uy, (r, 0)

UTIr (l", 0)

1+v /r 0 E, E .rcosf
= —cos= (k—cosf), | ———arctany | ———
E, 27 2 E rcos0 E,

1 [r 0 / /E 0
;0 a 7 {— sin— (k +cosf)+2 sm EwrcosO —————arctan reos

And two numerical integrations for Uy and Uy (see Eqgs. (9) and (11)).
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B.3. Functionally graded materials: E(x,y) = EyeP~

Two analytical integrations for Uy, and Uy, (from Egs. (8) and (10))

1 Ly ﬂzcosQ

* _ L 7[
p(r,0) = £ 1/2n(k cos@)cosz\/m./ dr

. I+v [r . (0 30 ﬁ”"sv
0 0) = £ Mﬂ[sm (§>(k+cosﬁ)+25m }\/W/ £ ds

And two numerical integrations for Uy and Uy (see Egs. (9) and (11)).
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