
International Journal of Solids and Structures 43 (2006) 1946–1959

www.elsevier.com/locate/ijsolstr
Mixed-mode stress intensity factors for graded materials

T. Menouillard, T. Elguedj, A. Combescure *

INSA/LaMCoS, UMR/CNRS 5514, Bât. J. d’Alembert, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France

Received 7 December 2004; received in revised form 29 April 2005
Available online 22 July 2005
Abstract

In this paper, we present a general method for the calculation of the various stress intensity factors in a material
whose constitutive law is elastic, linear and varies continuously in space. The approach used to predict the stress inten-
sity factors is an extension of the interaction integral method. For this type of material, we also develop a systematic
method to derive the asymptotic displacement fields and use it to achieve better-quality results. A new analytical asymp-
totic field is given for two special cases of graded materials. Numerical examples focus on materials with space-
dependent Young modulus.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fracture mechanics deals with the prediction of crack propagation in a material as a function of time
(see Cotterell, 2002). The difficulty lies in the presence of a singularity at the crack�s tip. The early works
in linear elasticity were those of Griffith (1921) and Irwin (1958); they introduced the concept of energy re-
lease rate, believed to be a necessary condition for the crack to evolve (see Bui, 1978). Further, in order to
take into account the direction of propagation of the crack, the concept of fracture mode must be intro-
duced. This has already been done in the case of materials with constant mechanical properties in space
(see Kim and Paulino, 2003a,b; Rao and Rahman, 2003). Here, we are focusing on the case where the
mechanical properties vary continuously in space. This type of material shall be called Graded Material
(see Dolbow and Gosz, 2002). The approach chosen in this paper is deliberately a macroscopic homogen-
ised vision of the fracture of the material.
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Let X be a solid with elastic, linear and isotropic behavior whose constitutive relation varies continu-
ously in space. It is subjected to static loads leading to a displacement field U and a stress field r.
2. Stress field near the crack’s tip

The problem�s assumptions enable us to express the static equilibrium equation in absence of body forces
as
div
�!

r ¼ 0
! ð1Þ
This is a system of first-order differential equations over the continuous domain X, whose solution involves
basis functions (defined over the whole domain X) and constants which can be denoted KI and KII (see Bui,
1978). Using the polar coordinate system in the Cartesian framework (see Fig. 1), the stress field in the
vicinity of the crack tip takes the form (at a point M(r,h) in space)
½rðMÞ� ¼ KI½gIðMÞ� þ KII½gIIðMÞ� ð2Þ

where gI and gII can be viewed as the shape functions of the stress field at the crack tip (detailed expression
of r are given in Appendix A.1).

So far, no reference has been made to the material�s elastic linear constitutive relation: therefore, these
results are true for any spatial distribution of this relation, provided that it is continuous over the domain,
X.
3. Displacement field near the crack’s tip

3.1. Shape of the displacement field

Now, the (linear) constitutive relation can be used to derive the shape of the displacement field near the
crack tip
r ¼ C � �ðUÞ ¼ KIgI þ KIIgII ð3Þ

Thus, the displacement field can be written as
UðMÞ ¼ KIusIðMÞ þ KIIusIIðMÞ ð4Þ
Fig. 1. Basis and coordinate system used.
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The set of the solutions is the space generated by the vectors usIðMÞ and usIIðMÞ defined by: C.�ðusi Þ ¼ gi for
i = I and II. Let us apply this method to the following two materials:

• a material with constant mechanical properties in space: constitutive law denoted Ch; material�s asymp-
totic fields denoted uhi ;

• a material with mechanical properties varying continuously in space: constitutive law denoted C�ðMÞ;
material�s asymptotic fields denoted U �

i .

Obviously, for i = I and II, one has
Ch � �ðuhi Þ ¼ C�ðMÞ � �ðU �
i Þ ¼ gi ð5Þ
Therefore, the asymptotic displacement fields for the material with varying characteristics in space are func-
tions of the displacement fields for the material with constant characteristics and of the constitutive rela-
tions of the two materials considered
�ðU �
i Þ ¼ ðC�ðMÞÞ�1 � ðCh � �ðuhi ÞÞ ð6Þ
It appears that this equation is a very general and powerful tool which allows to compute the asymptotic
strain field �(U�) for any continuously varying graded material using the known asymptotic strain field of a
constant mechanical property one.

Applying this result to a material with constant Poisson ratio and varying spatially Young modulus, one
gets for i = I and II
�ðU �
i

�!Þ ¼ E0

EðMÞ �ðu
h
i

!
Þ ð7Þ
3.2. Asymptotic displacement fields: case of a material with a varying young modulus in space

and a constant poisson ratio

3.2.1. General formulation

The resolution of the differential equations (see Eq. (7)) leads to the following expression of the displace-
ment fields (using uh defined in Appendix A.1):
U �
Irðr; hÞ ¼

1þ mffiffiffiffiffiffi
2p

p cos
h
2
ðk � cos hÞ

Z r

0

1

2
ffiffi
t

p
Eðt; hÞ

dt ð8Þ

U �
Ihðr; hÞ ¼

Z h

0

ð1þ mÞ
ffiffiffiffiffi
2r

p

4
ffiffiffi
p

p
Eðr;/Þ cos

/
2
ðk þ cos/� 2Þ

 !
� U Irðr;/Þ

" #
d/ ð9Þ

U �
IIrðr; hÞ ¼

1þ mffiffiffiffiffiffi
2p

p � sin
h
2

� �
ðk þ cos hÞ þ 2 sin

3h
2

� � Z r

0

1

2
ffiffi
t

p
Eðt; hÞ

dt ð10Þ

U �
IIhðr; hÞ ¼

Z h

0

� ð1þ mÞ
ffiffiffiffiffi
2r

p

4
ffiffiffi
p

p
Eðr;/Þ sin

/
2
ðk þ cos/� 2Þ þ 2 sin/ cos

/
2

� �" #
d/

�
Z h

0

U IIrðr;/Þd/þ fIIðrÞ ð11Þ
where Kolosov�s constant k is 3 � 4m in plane strain or 3�m
1þm in plane stress.
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Observing that Eq. (7) for asymptotic strain consists in three scalar differential equations, the function fII
can be determined using the third one, i.e.
�xyðU
!�

i Þ ¼
E0

Eðx; yÞ �xyð u
!h

i Þ ð12Þ
This set of equations yields to the solutions of the proposed problem. In the general case, these can be ob-
tained numerically.

3.2.2. Exact analytical case: E(M) = E0e
ar

Two explicit exact solutions have been found for U�. The first one is given in Appendix B.1. The second
is developed in this section. The objective of this section is to develop the complete analytical expression of
the asymptotic displacement fields U �

I and U �
II for this type of material. This material is interesting because

it leads to an analytical solution:
U �
Irðr; hÞ ¼

1þ m
E0

ffiffiffiffiffiffi
r
2p

r
ðk � cos hÞ cos h

2

1ffiffiffiffiffi
ar

p
Z ffiffiffi

ar
p

0

e�t2dt ð13Þ

U �
Ihðr; hÞ ¼

1þ m
6E0

ffiffiffiffiffiffi
r
2p

r
ð6k � 9Þ sin h

2
þ sin

3h
2

� �
e�ar

"

þ ð6� 12kÞ sin h
2
þ 2 sin

3h
2

� �
1ffiffiffiffiffi
ar

p
Z ffiffiffi

ar
p

0

e�t2dt

#
ð14Þ

U �
IIrðr; hÞ ¼

1þ m
E0

ffiffiffiffiffiffi
r
2p

r
� sin

h
2

� �
ðk þ cos hÞ þ 2 sin

3h
2

� �
1ffiffiffiffiffi
ar

p
Z ffiffiffi

ar
p

0

e�t2dt ð15Þ

U �
IIhðr; hÞ ¼

1þ m
2E0

ffiffiffiffiffiffi
r
2p

r
ð2k � 3Þ cos h

2
þ cos

3h
2
� 1� 3k

� �
e�ar

"

þ ð2� 4kÞ cos h
2
þ 2 cos

3h
2
þ 3k þ 1� 2ðk þ 3Þar
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1ffiffiffiffiffi
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p
Z ffiffiffi
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0

e�t2dt

#
ð16Þ
Since these solutions are completely analytical, they can be used in calculation programs without numerical
computations.

3.2.3. Partial analytical solution

Two solutions for more usual materials are given in Appendix B.1. These imply partial numerical
integration.
4. Formulation of the energy release rate

Suo and Combescure (1992a,b) showed that the energy release rate can be written for space variable
material as follows, using any continuous virtual displacement field H parallel to the crack face (Fig. 2)
G ¼
Z

X
trðr � rU � rHÞ � dX�

Z
X
w � divðHÞdXþ� 1

2

Z
X
tr rC �H � �ðUÞ � �ðUÞ½ �dXþ

Z
X
f � U

� divðHÞdXþ
Z
X
rf �H � UdX 8H ð17Þ



Fig. 2. Description of the field H near the crack�s tip.
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with a the thermal expansion coefficient, dT the temperature variation within the material, and with w

defined by
w ¼ 1

2
tr½r � �ðUÞ� ð18Þ
Remark. Eq. (17) is valid on the whole domain X. The choice of H function is arbitrary. If we chose H to
be (0,0) outside the circle R2, G has to be computed only within the circle.

In a finite element program, such as CAST3M, the GH method (see Suo and Valeta, 1996; Suo and Bro-
chard, 1991; Attigui et al., 1995) is used.
5. Mixed-mode analysis for a variable material

The method presented here relies essentially on the shape of the displacements near the crack tip. We
showed the relation between the displacements and the stress intensity factors KI and KII. The following
method enables one to calculate these stress intensity factors.

5.1. Preliminaries

First, let us introduce the following functions:
J : R4 ! Rðu; vÞ7!Jðu; vÞ ¼ aðu; vÞ

where

• a(Æ , Æ) is a symmetric bilinear form defined as
aðu; vÞ ¼
Z
X
tr C � �ðuÞ � rv � rHþ C � �ðvÞ � ru � rH� ðdivðHÞ � CþrC �HÞ � �ðuÞ � �ðvÞ½ �dX
These functions have the following property: if U is the actual displacement field, then
JðU ;UÞ ¼ 2 � G ¼ aðU ;UÞ ð19Þ

Let usI and usII be two fields characterizing Mode I and Mode II in displacement. By choosing
U ¼ KIusI þ KIIusII, one gets
G ¼ 1

2
aðusI; usIÞK2

I þ
1

2
aðusII; usIIÞK2

II þ aðusI; usIIÞKIKII
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5.2. The method

In order to determine the two scalars (KI and KII), one must write two scalar equations involving the two
quantities; let us apply the bilinear form a(Æ , Æ) to two pairs of displacement fields
aðU ; usIÞ ¼ KIaðusI; usIÞ þ KIIaðusII; usIÞ

aðU ; usIIÞ ¼ KIaðusI; usIIÞ þ KIIaðusII; usIIÞ

(
ð20Þ
The solutions are
KI ¼
aðusII; usIIÞ � aðU ; usIÞ � aðusI; usIIÞ � aðU ; usIIÞ

aðusI; usIÞ � aðusII; usIIÞ � aðusI; usIIÞ
2

ð21Þ

KII ¼
aðusI; usIÞ � aðU ; usIIÞ � aðusI; usIIÞ � aðU ; usIÞ

aðusI; usIÞ � aðusII; usIIÞ � aðusI; usIIÞ
2

ð22Þ
Remark 1. If the material is constant, then
aðuhI ; uhI Þ ¼
2ð1� m2Þ

E0

; aðuhII; uhIIÞ ¼
2ð1� m2Þ

E0

; aðuhI ; uhIIÞ ¼ 0 ð23Þ
Thus, the stress intensity factors can be written
KI ¼
E0aðU ; uhI Þ
2ð1� m2Þ ; KII ¼

E0aðU ; uhIIÞ
2ð1� m2Þ ð24Þ
This particular case agrees with published results (Visse, 1995).

Remark 2. Eqs. (21) and (22) are new because of the presence of term aðusI; usIIÞ which is compulsory when
the material is spatially variable and vanishes when material is constant.
5.3. Use of the asymptotic fields of the constant material for a variable material

The space variation of the material raises the question of the choice of the field usi in the formulation of
the stress intensity factors. One can use either uhi or U

�
i . However, one may anticipate that the quality of the

results will depend on the asymptotic fields chosen for the uncoupling. Near the crack tip, the fields uhi give a
good approximation because the material�s characteristics are continuous. However, as the distance to the
crack tip increases, these fields become less good than the fields U �

i , which take into account the variation of
the material�s characteristics. The numerical examples will illustrate these points.

In this section, we chose to use the asymptotic h fields. Table 1 shows the analytical results of the cal-
culations of aðuhi ; uhj Þ for different type of spatially variable Young modulus. In particular, it shows the evo-
lution of aðuhi ; uhj Þ as a function of the radius R of the crown H. One can see that the error of the prediction
of KI and KII is proportional to the product of the proportionally constant w, b, c by the radius R in case of
linear dependency and to R2 in case of quadratic dependency. It is clear in this case that the use of uh dis-
placement fields to uncouple the Ki implies a very fine mesh close to the crack tip to have a good accuracy.

Remark. One should note that for any continuous material (denoting E(0,0) = E0)
lim
R!0

aðuhI ; uhI Þ ¼
2ð1� m2Þ

E0

; lim
R!0

aðuhII; uhIIÞ ¼
2ð1� m2Þ

E0

; lim
R!0

aðuhI ; uhIIÞ ¼ 0 ð25Þ



Table 1
Table showing the error in the coefficients aðuhi ; uhj Þ as a function of the radius R of the crown H for several type of spatial variations of
the Young modulus

Error in aðuhi ; uhj Þ
E(x,y) aðuhI ; uhI Þ �

2ð1�m2Þ
E0

aðuhII; uhIIÞ �
2ð1�m2Þ

E0
aðuhI ; uhIIÞ

E0 0 0 0
E0 + wx �2.99 wR

E2
0

�1.21 wR
E2
0

0
E0 + by 0 0 0.24 bR

E2
0

E0 + cx y 0 0 0.58 cR2

E2
0
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6. Numerical examples

First, the validation of the formulation of the stress intensity factors will enable us to focus on the choice
of usi and more particularly on the influence of the radius of the field H on the results. Since the fields U �

i

become closer to the true solution than the fields uhi as the distance to the crack tip increases, they lead to
results that are less dependent on the size of the field H. We will observe this difference in a finite element
program (CAST3M Suo and Combescure, 1992a) and in a program using the eXtended Finite Element
Method (X-FEM, Moes et al., 1999; Moes et al., 2002). Finally, the X-FEM will enable us to consider
the case of an inclined crack.

6.1. Validation of the formulation

In order to validate the method described in the previous sections, the paper Kim and Paulino, 2003a
will be used as the reference. The characteristics of the test are presented in Fig. 3 (displacement loading
� ¼ 1). The programming of the bilinear form a(Æ , Æ) is the core of this validation. The normalised stress
intensity factors (eK I) are defined as follows:
eK I ¼
KI

�Eð�0.4Þ ffiffiffiffiffiffi
pa

p ð26Þ
Fig. 3. Numerical validation: geometry, loading, Young modulus.
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Let us recall that the expression of the stress intensity factor for Mode I is
KI ¼
aðusII; usIIÞ � aðU ; usIÞ � aðusI; usIIÞ � aðU ; usIIÞ

aðusI; usIÞ � aðusII; usIIÞ � aðusI; usIIÞ
2

ð27Þ
How should one choose the asymptotic fields to be used in the calculation of KI? Let us choose to use the
asymptotic fields of a material whose mechanical characteristics are constant (values taken at the crack tip).
Thus, these are approximate fields. We are going to focus on the influence of the radius of the field H on the
results.
Fig. 4. Results of the numerical validation.



Table 2
Table of the test results compared to the results of Kim and Paulino (2003a)

b ba Direct Method I Method II Eischen This method

0 0 2.109 2.133 2.133 2.112 2.1118
5 2 2.289 2.304 2.348 2.295 2.300
10 4 2.549 2.589 2.670 2.571 2.586
15 6 2.729 2.769 2.879 2.733 2.765
50 20 3.050 3.314 3.579 3.228 3.207

Table 3
Table of the maximum crown radius as a function of the maximum error allowed on KI

b ba R/a max for the following allowable errors

Error on KI: 5% (%) Error on KI: 10% (%) Error on KI: 20% (%)

5 2 19 33 39
10 4 13 21 32
15 6 8 13 21
50 20 1.5 2 3
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As expected in previous section, the influence of the radius of the crown can be observed, and the greater
the variation of the modulus, the smaller a radius it takes to achieve an acceptable result. This can be ex-

plained by the variability of the Young modulus. Fig. 4 shows the calculated eK I (black dots) as functions of
the crown of virtual field H used for various Young moduli. In addition, the horizontal lines represent the
results of the works of Kim and Paulino (2003a). These authors proposed various methods which are sum-
marized in Table 2 and compared to the results of Fig. 4. The continuous black line corresponds to the
Direct Method, the continuous grey line to Method II, the dotted black line to Method I and the dotted
grey line to the Eischen Method.

Convergence of the results occurred as soon as the Young modulus converged towards E0 (value at the
crack tip). The maximum acceptable radius of a crown as a function of b is shown in Table 3. The conclu-
sion is that when the variation of Young modulus is large near the crack tip, a very fine mesh is needed to
get a good KI value. R/a has to be around 1%.

6.2. Choice of the asymptotic solutions in the calculation of the stress intensity factors

The advantage of the method presented resides in the available asymptotic solutions to choose from. By
enriching the information in these solutions one can use larger H crowns (and, therefore, larger elements in
these crowns). In the end, enriching the asymptotic solutions reduces the number of elements near the crack
tip.

For a given error on the stress intensity factors, richer solutions enable one to use a larger field.
The enrichment of the asymptotic displacement fields yields greater independence with respect to the

radius of the circular field.
Fig. 5 describes the mechanical problem. The quality of the prediction of KI and KII with a standard

finite element solution and with the two uh and U� fields are compared for Finite Element CAST3M in
Fig. 6 and X-FEM in Fig. 7.

Fig. 8 shows the relative error in the calculated stress intensity factor KI as a function of the radius of
the field and of the asymptotic solutions chosen for the two calculation cases (CAST3M and X-FEM).
This is a very interesting graph as it shows two things: first, the computational effectiveness of the
X-FEM compared to the finite element method (CAST3M). The results with the X-FEM are virtually



Fig. 5. Geometry of the mixed-mode test case (Young modulus is: E(M) = E0e
ar).

Fig. 6. Influence of the radius of the H crown on the calculation of KI and KII with CAST3M.

Fig. 7. Influence of the radius of the H crown on the calculation of KI and KII with X-FEM.
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independent of the crown (see Figs. (21) and (22)). This is due to the fact that the extended enriched func-
tions contained all the ingredients and thus the minimisation done with the linear system solution leads to
automatic adjustment of the coefficients in an energetic norm. Second, using the asymptotic solutions of



Fig. 8. Relative error (in %) in KI as a function of the radius of the H field�s crown.
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the variable material for decoupling leads to smaller errors than using asymptotic solutions of the con-
stant material.

6.3. X-FEM: inclined crack in a graded material

A diagram of the test is shown in Fig. 9. Since the material does not lend itself to the analytical deter-
mination of the asymptotic solutions, decoupling was achieved using the displacement fields of the constant
material (value at the crack tip for the actual material). The results for crack angles 0�, 30�, 40� and 60� in
the material (E(M) = 2e3x) are shown in Figs. 10 and 11.
Fig. 9. Inclined crack: geometry and loading (Young modulus is: E(M) = E0e
ax).

Fig. 10. Influence of the radius of the H field�s crown on the calculation of KI for an FGM in mixed mode, for various crack angles b.



Fig. 11. Influence of the radius of the H field�s crown on the calculation of KII for a FGM in mixed mode, for various crack angles b.
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Figs. 10 and 11 indicate a certain stability of the results with respect to the H field�s crown: the error in
the stress intensity factors is 20% at the most for a radius of the crown equal to 40% of the crack�s length
(which is an extremely large crown). A reasonable crown size is no more than 20% of the crack�s length,
which corresponds to an error in the stress intensity factors of 10%.
7. Conclusion and future works

The uncoupling of the fracture modes involves a virtual crown (e.g. field H). From a computational
standpoint, it is preferable for the results not to depend on the radius of this crown. This is indeed the case
for a constant material. Conversely, for a variable material, the material�s characteristics vary within the
crown and, therefore, the use of the displacement fields of the constant material induces a sensitivity to
the radius of the crown. We achieved better stability by using the variable constitutive relation along with
the asymptotic fields of the variable material.

However, in most cases, there is no exact asymptotic solution for the material E(X). The X-FEM
tool produced much better results than standard finite element approach because of the presence in the ex-
tended functions of all basic function of the fields ie

ffiffi
r

p
fcosðh=2Þ; sinðh=2Þ; cosð3h=2Þ; sinð3h=2Þg and the

technique is hence highly recommended even if there is no exact asymptotic solution to efficiently decouple
KI and KII.
Appendix A

A.1. Asymptotic stress field: case of a material with constant characteristics� � � �� �

rxxðr; hÞ ¼
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2
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2
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3h
2

� �
rxyðr; hÞ ¼

1ffiffiffiffiffiffiffi
2pr

p KI sin
h
2
cos

h
2
cos

3h
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2
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A.2. Asymptotic displacement fields: case of a material with constant characteristicsffiffiffiffiffiffir � �
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r
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h
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E0
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Appendix B

B.1. Young’s modulus: E(r,h) = E0 + E,rrffiffiffiffiffiffir ffiffiffiffiffiffiffiffis ffiffiffiffiffiffiffiffir

U �

Irðr; hÞ ¼
1þ m
E0

r
2p

cos
h
2
ðk � cos hÞ E0

E;rr
arctan

E;rr
E0

U �
Ihðr; hÞ ¼

1þ m
6

ffiffiffiffiffiffi
r
2p

r
sin 3h

2
þ ð6k þ 9Þ sin h

2

E0 þ E;rr
þ
2 sin 3h

2
� ð12k � 6Þ sin h

2

E0

ffiffiffiffiffiffiffiffi
E0

E;rr

s
arctan

ffiffiffiffiffiffiffiffi
E;rr
E0

r" #

U �
IIrðr; hÞ ¼

1þ m
E0

ffiffiffiffiffiffi
r
2p

r
� sin

h
2
ðk þ cos hÞ þ 2 sin

3h
2

� � ffiffiffiffiffiffiffiffi
E0

E;rr

s
arctan

ffiffiffiffiffiffiffiffi
E;rr
E0

r

U �
IIhðr; hÞ ¼

1þ m
2

ffiffiffiffiffiffi
r
2p

r
cos 3h

2
þ ð2k � 3Þ cos h

2
þ 4� 4k þ 2E;rr

E0
ð1� kÞ

E0 þ E;rr

"

þ
2 cos 3h

2
þ ð2� 4kÞ cos h

2
� 4ð1� kÞ

E0

ffiffiffiffiffiffiffiffi
E0

E;rr

s
arctan

ffiffiffiffiffiffiffiffi
E;rr
E0

r #
þ fIIðrÞ
B.2. Young’s modulus: E(x,y) = E0 + E,xx

Two analytical integrations for UIr and UIIr (from Eqs. (8) and (10))
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And two numerical integrations for UIh and UIIh (see Eqs. (9) and (11)).
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B.3. Functionally graded materials: E(x,y) = E0e
bx

Two analytical integrations for UIr and UIIr (from Eqs. (8) and (10))
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And two numerical integrations for UIh and UIIh (see Eqs. (9) and (11)).
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Recherches.


	Mixed-mode stress intensity factors for graded materials
	Introduction
	Stress field near the crack’s tip
	Displacement field near the crack’s tip
	Shape of the displacement field
	Asymptotic displacement fields: case of a material with a varying young modulus in space�and a constant poisson ratio
	General formulation
	Exact analytical case: E(M)=E0e alpha r
	Partial analytical solution


	Formulation of the energy release rate
	Mixed-mode analysis for a variable material
	Preliminaries
	The method
	Use of the asymptotic fields of the constant material for a variable material

	Numerical examples
	Validation of the formulation
	Choice of the asymptotic solutions in the calculation of the stress intensity factors
	X-FEM: inclined crack in a graded material

	Conclusion and future works
	Appendix A
	Asymptotic stress field: case of a material with constant characteristics
	Asymptotic displacement fields: case of a material with constant characteristics

	Appendix B
	Young’s modulus: E(r, theta )=E0+E,rr
	Young’s modulus: E(x,y)=E0+E,xx
	Functionally graded materials: E(x,y)=E0e beta x

	References


